These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Junctin and the histidine-rich Ca2+ binding protein: potential roles in heart failure and arrhythmogenesis.
    Author: Pritchard TJ, Kranias EG.
    Journal: J Physiol; 2009 Jul 01; 587(Pt 13):3125-33. PubMed ID: 19403607.
    Abstract:
    Contractile dysfunction and ventricular arrhythmias associated with heart failure have been attributed to aberrant sarcoplasmic reticulum (SR) Ca(2+) cycling. The study of junctin (JCN) and histidine-rich Ca(2+) binding protein (HRC) becomes of particular importance since these proteins have been shown to be critical regulators of Ca(2+) cycling. Specifically, JCN is a SR membrane protein, which is part of the SR Ca(2+) release quaternary structure that also includes the ryanodine receptor, triadin and calsequestrin. Functionally, JCN serves as a bridge between calsequestrin and the Ca(2+) release channel, ryanodine receptor. HRC is a SR luminal Ca(2+) binding protein known to associate with both triadin and the sarcoplasmic reticulum Ca(2+)-ATPase, and may thus mediate the crosstalk between SR Ca(2+) uptake and release. Indeed, evidence from genetic models of JCN and HRC indicate that they are important in cardiophysiology as alterations in these proteins affect SR Ca(2+) handling and cardiac function. In addition, downregulation of JCN and HRC may contribute to Ca(2+) cycling perturbations manifest in the failing heart, where their protein levels are significantly reduced. This review examines the roles of JCN and HRC in SR Ca(2+) cycling and their potential significance in heart failure.
    [Abstract] [Full Text] [Related] [New Search]