These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Use of signal analysis of heart sounds and murmurs to assess severity of mitral valve regurgitation attributable to myxomatous mitral valve disease in dogs. Author: Ljungvall I, Ahlstrom C, Höglund K, Hult P, Kvart C, Borgarelli M, Ask P, Häggström J. Journal: Am J Vet Res; 2009 May; 70(5):604-13. PubMed ID: 19405899. Abstract: OBJECTIVE: To investigate use of signal analysis of heart sounds and murmurs in assessing severity of mitral valve regurgitation (mitral regurgitation [MR]) in dogs with myxomatous mitral valve disease (MMVD). ANIMALS: 77 client-owned dogs. PROCEDURES: Cardiac sounds were recorded from dogs evaluated by use of auscultatory and echocardiographic classification systems. Signal analysis techniques were developed to extract 7 sound variables (first frequency peak, murmur energy ratio, murmur duration > 200 Hz, sample entropy and first minimum of the auto mutual information function of the murmurs, and energy ratios of the first heart sound [S1] and second heart sound [S2]). RESULTS: Significant associations were detected between severity of MR and all sound variables, except the energy ratio of S1. An increase in severity of MR resulted in greater contribution of higher frequencies, increased signal irregularity, and decreased energy ratio of S2. The optimal combination of variables for distinguishing dogs with high-intensity murmurs from other dogs was energy ratio of S2 and murmur duration > 200 Hz (sensitivity, 79%; specificity, 71%) by use of the auscultatory classification. By use of the echocardiographic classification, corresponding variables were auto mutual information, first frequency peak, and energy ratio of S2 (sensitivity, 88%; specificity, 82%). CONCLUSIONS AND CLINICAL RELEVANCE: Most of the investigated sound variables were significantly associated with severity of MR, which indicated a powerful diagnostic potential for monitoring MMVD. Signal analysis techniques could be valuable for clinicians when performing risk assessment or determining whether special care and more extensive examinations are required.[Abstract] [Full Text] [Related] [New Search]