These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fabrication and performance of high-frequency composite transducers with triangular-pillar geometry. Author: Brown JA, Chérin E, Yin J, Foster FS. Journal: IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):827-36. PubMed ID: 19406712. Abstract: A single-element, 40-MHz, 3-mm diameter transducer was fabricated with a geometric focus at 9 mm. The transducer was based on a piezo-composite substrate with triangular-shaped composite pillars. The 2-way bandwidth of 50% and impedance magnitude were in agreement with that predicted using finite-element modeling. A one-way radiation pattern was collected using a needle hydrophone. The one-way -3 dB beamwidth at the geometric focus was measured to be 120 microm and the -3 dB depth of field was 2.5 mm. This is in good agreement with the theoretical predictions of 112.5 microm and 2.4 mm. The triangular-pillar composite transducer was then compared with a transducer with square composite pillars with similar volume fraction of active ceramic. A 9.5 dB reduction in the amplitude of the secondary resonance was found for the triangular-pillar composite as well as a 30% gain in the 2-way pulse bandwidth. A 256-element 30-MHz linear array was fabricated as a preliminary investigation into the use of the triangular pillar as the substrate in a high-frequency linear array transducer. In vivo images were generated with both the single-element and linear-array transducers.[Abstract] [Full Text] [Related] [New Search]