These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Propagation of shear waves generated by a modulated finite amplitude radiation force in a viscoelastic medium. Author: Giannoula A, Cobbold RS. Journal: IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):575-88. PubMed ID: 19411216. Abstract: An effective way to generate localized narrowband low-frequency shear waves within tissue noninvasively, is by the modulated radiation force, resulting from the interference of two confocal quasi-CW ultrasound beams of slightly different frequencies. By using approximate viscoelastic Green's functions, investigations of the properties of the propagated shear-field component at the fundamental modulation frequency were previously reported by our group. However, high-amplitude source excitations may be needed to increase the signal-to-noise-ratio for shear-wave detection in tissue. This paper reports a study of the generation and propagation of dynamic radiation force components at harmonics of the modulation frequency for conditions that generally correspond to diagnostic safety standards. We describe the propagation characteristics of the resulting harmonic shear waves and discuss how they depend on the parameters of nonlinearity, focusing gain, and absorption. For conditions of high viscosity (believed to be characteristic of soft tissue) and higher modulation frequencies, the approximate shear wave Green's function is inappropriate. A more exact viscoelastic Green's function is derived in k-space, and using this, it is shown that the lowpass and dispersive effects, associated with a Voigt model of tissue, are more accurately represented. Finally, it is shown how the viscoelastic properties of the propagating medium can be estimated, based on several spectral components of the shearwave spectrum.[Abstract] [Full Text] [Related] [New Search]