These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of organic hydroperoxides and hydroperoxy acids in secondary organic aerosol formed during the ozonolysis of different monoterpenes and sesquiterpenes by on-line analysis using atmospheric pressure chemical ionization ion trap mass spectrometry. Author: Reinnig MC, Warnke J, Hoffmann T. Journal: Rapid Commun Mass Spectrom; 2009 Jun; 23(11):1735-41. PubMed ID: 19412924. Abstract: On-line ion trap mass spectrometry (ITMS) enables the real-time characterization of reaction products of secondary organic aerosol (SOA). The analysis was conducted by directly introducing the aerosol particles into the ion source. Positive-ion chemical ionization at atmospheric pressure (APCI(+)) ITMS was used for the characterization of constituents of biogenic SOA produced in reaction-chamber experiments. APCI in the positive-ion mode usually enables the detection of [M+H](+) ions of the individual SOA components. In this paper the identification of organic peroxides from biogenic volatile organic compounds (VOCs) by on-line APCI-ITMS is presented. Organic peroxides containing a hydroperoxy group, generated by gas-phase ozonolysis of monoterpenes (alpha-pinene and beta-pinene) and sesquiterpenes (alpha-cedrene and alpha-copaene), could be detected via on-line APCI(+)-MS/MS experiments. A characteristic neutral loss of 34 Da (hydrogen peroxide, H(2)O(2)) in the on-line MS/MS spectra is a clear indication for the existence of an organic peroxide, containing a hydroperoxy functional group.[Abstract] [Full Text] [Related] [New Search]