These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distinct contractile and cytoskeletal protein patterns in the Antarctic midge are elicited by desiccation and rehydration.
    Author: Li A, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL.
    Journal: Proteomics; 2009 May; 9(10):2788-98. PubMed ID: 19415656.
    Abstract:
    Desiccation presents a major challenge for the Antarctic midge, Belgica antarctica. In this study, we use proteomic profiling to evaluate protein changes in the larvae elicited by dehydration and rehydration. Larvae were desiccated at 75% relative humidity (RH) for 12 h to achieve a body water loss of 35%, approximately half of the water that can be lost before the larvae succumb to dehydration. To evaluate the rehydration response, larvae were first desiccated, then rehydrated for 6 h at 100% RH and then in water for 6 h. Controls were held continuously at 100% RH. Protein analysis was performed using 2-DE and nanoscale capillary LC/MS/MS. Twenty-four identified proteins changed in abundance in response to desiccation: 16 were more abundant and 8 were less abundant; 84% of these proteins were contractile or cytoskeletal proteins. Thirteen rehydration-regulated proteins were identified: 8 were more abundant and 5 were less abundant, and 69% of these proteins were also contractile or cytoskeletal proteins. Additional proteins responsive to desiccation and rehydration were involved in functions including stress responses, energy metabolism, protein synthesis, glucogenesis and membrane transport. We conclude that the major protein responses elicited by both desiccation and rehydration are linked to body contraction and cytoskeleton rearrangements.
    [Abstract] [Full Text] [Related] [New Search]