These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bilberry and its main constituents have neuroprotective effects against retinal neuronal damage in vitro and in vivo.
    Author: Matsunaga N, Imai S, Inokuchi Y, Shimazawa M, Yokota S, Araki Y, Hara H.
    Journal: Mol Nutr Food Res; 2009 Jul; 53(7):869-77. PubMed ID: 19415665.
    Abstract:
    Our aim was to determine whether a Vaccinium myrtillus (bilberry) anthocyanoside (VMA) and/or its main anthocyanidin constituents (cyanidin, delphinidin, and malvidin) can protect retinal ganglion cells (RGCs) against retinal damage in vitro and in vivo. In RGC cultures (RGC-5, a rat ganglion cell-line transformed using E1A virus) in vitro, cell damage and radical activation were induced by 3-(4-morpholinyl) sydnonimine hydrochloride (SIN-1, a peroxynitrite donor). Cell viability was measured using a water-soluble tetrazolium salt assay. Intracellular radical activation within RGC-5 cells was evaluated using 5-(and-6)-chloromethyl-2,7-dichlorodihydrofluorescein diacetate acetyl ester (CM-H(2)DCFDA). Lipid peroxidation was assessed using the supernatant fraction of mouse forebrain homogenates. In mice in vivo, we evaluated the effects of VMA on N-methyl-D-aspartic acid (NMDA)-induced retinal damage using hematoxylin-eosin and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) stainings. VMA and all three anthocyanidins (i) significantly inhibited SIN-1-induced neurotoxicity and radical activation in RGC-5, (ii) concentration-dependently inhibited lipid peroxidation in mouse forebrain homogenates. Intravitreously injected VMA significantly inhibited the NMDA-induced morphological retinal damage and increase in TUNEL-positive cells in the ganglion cell layer. Thus, VMA and its anthocyanidins have neuroprotective effects (exerted at least in part via an anti-oxidation mechanism) in these in vitro and in vivo models of retinal diseases.
    [Abstract] [Full Text] [Related] [New Search]