These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Post-Golgi traffic in plants. Author: Richter S, Voss U, Jürgens G. Journal: Traffic; 2009 Jul; 10(7):819-28. PubMed ID: 19416470. Abstract: Secretory and endocytic traffic through the post-Golgi endomembrane system regulates the abundance of plasma-membrane proteins such as receptors, transporters and ion channels, modulating the ability of a cell to communicate with its neighbours and to adapt to a changing environment. The major post-Golgi compartments are numerous and appear to be similar to their counterparts in animals. However, endosomes are rather ill defined morphologically but seem to be involved in specific trafficking pathways. Many plasma-membrane proteins cycle constitutively via endosomal compartments. The trans-Golgi network (TGN) appears to be an early endosome where secretory and endocytic traffic meet. Endocytosed proteins that are to be degraded are targeted to the vacuole via the multivesiculate prevacuolar compartment (PVC) whereas cycling proteins pass through recycling endosomes. The trafficking machinery involves the same classes of proteins as in other eukaryotes. However, there are modifications that match the specifics of post-Golgi traffic in plants. Although plants lack epithelia, some plasma-membrane proteins are located on specific faces of the cell which reflects polarized traffic and influences the physiological performance of the tissue. Plants also differentiate highly polarized tip-growing cells in which post-Golgi traffic is adapted to very high rates of targeted exocytosis, endocytosis and recycling.[Abstract] [Full Text] [Related] [New Search]