These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Decreased whole body lipolysis as a mechanism of the lipid-lowering effect of pioglitazone in type 2 diabetic patients. Author: Gastaldelli A, Casolaro A, Ciociaro D, Frascerra S, Nannipieri M, Buzzigoli E, Ferrannini E. Journal: Am J Physiol Endocrinol Metab; 2009 Jul; 297(1):E225-30. PubMed ID: 19417125. Abstract: Pioglitazone has been shown to reduce fasting triglyceride levels. The mechanisms of this effect have not been fully elucidated, but decreased lipolysis may contribute to blunt the hypertriglyceridemic response to a meal. To test this hypothesis, we studied 27 type 2 diabetes mellitus (T2DM) patients and 7 sex-, age-, and body mass index-matched nondiabetic controls. Patients were randomized to pioglitazone (45 mg/day) or placebo for 16 wk. Whole body lipolysis was measured [as the [(2)H(5)]glycerol rate of appearance (R(a))] in the fasting state and for 6 h following a mixed meal. Compared with controls, T2DM had higher postprandial profiles of plasma triglycerides, free fatty acid (FFA), and beta-hydroxybutyrate, and a decreased suppression of glycerol R(a) (P < 0.04) despite higher insulin levels [268 (156) vs. 190 (123) pmol/l, median (interquartile range)]. Following pioglitazone, triglycerides and FFA were reduced (P = 0.05 and P < 0.04, respectively), and glycerol R(a) was more suppressed [-40 (137) vs. +7 (202) mumol/min of placebo, P < 0.05] despite a greater fall in insulin [-85 (176) vs. -20 (58) pmol/l, P = 0.05]. We conclude that, in well-controlled T2DM patients, whole body lipolysis is insulin resistant, and pioglitazone improves the insulin sensitivity of lipolysis.[Abstract] [Full Text] [Related] [New Search]