These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simple co-electrodeposition of functionalized multi-walled carbon nanotubes/chitosan composite coating on mainspring for enhanced modulus of elasticity. Author: Jia FL, Gong JM, Wong KW, Du RX. Journal: Nanotechnology; 2009 Jan 07; 20(1):015701. PubMed ID: 19417260. Abstract: Co-electrodeposition of functionalized multi-walled carbon nanotubes (f-MWCNTs) with chitosan was performed on pieces of a stainless steel mainspring. Under moderate conditions, composite coatings with controllable thickness from a few hundred nanometers to tens of micrometers can be achieved. After coating an 8 microm composite layer on a piece of mainspring 120 microm thick (i.e. 6.7% increase in thickness), the Young's modulus of the mainspring was found to have increased by more than approximately 25%. Moreover, the coated mainsprings possess much stronger mechanical strength as demonstrated by fatigue tests. The significant enhancement of Young's modulus and intrinsic strength are mostly attributed to the effect exerted by the subtle combination of chitosan and MWCNT. In the current study, the intensive cross-linkages formed between the -COOH groups in f-MWCNTs and the hydroxyl (-OH) and amino (-NH2) groups in chitosan were exploited. The chitosan molecular chains and f-MWCNTs both chemically react and physically knot with each other, leading to a three-dimensional interlaced f-MWCNT/chitosan composite coating. The reported co-electrodeposition provides a simple approach to form a stable, reproducible and rigid f-MWCNTs composite coating, which leads to the realization of a high-performance mainspring with reinforced mechanical strength.[Abstract] [Full Text] [Related] [New Search]