These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties.
    Author: Zhou H, Fan T, Han T, Li X, Ding J, Zhang D, Guo Q, Ogawa H.
    Journal: Nanotechnology; 2009 Feb 25; 20(8):085603. PubMed ID: 19417451.
    Abstract:
    Herein, a general bottom-up approach is proposed for the controlled assembly of metal chalcogenide nanoparticles into biomorphic porous hollow nanostructures by a sonochemical method using bacteria as morph-biotemplates. Biomorphic PbS and ZnS hollow nanostructures have been successfully synthesized with two species of bacteria cocci and bacillus as morph-templates. The biomorphic hollow assemblies possess shape-controllable, size-tunable and shell-thickness-adjustable characteristics. Thus, the structure and morphology of the hollow assemblies may be varied in a controllable way to tailor their properties over a broad range. A preliminary study on the light-harvesting properties of PbS and ZnS hollow spheres revealed that the hollow and porous structure is clearly far more favorable for the absorption of light than solid counterparts, which accounts for both multiple scattering effects at the large voids (hollow cavities) and Rayleigh scattering by nanovoids of the exterior shells. Furthermore, photocatalytic studies of ZnS nanostructures by degradation of acid fuchsine under solar irradiation have proved that the hollow structures possess superior photocatalytic activity to the corresponding solid counterparts. This versatile approach provides an effective route for the further extensive study of the distinct properties imparted by hollow nanostructures and extends their application potentials in photocatalysis and solar energy storage/conversion.
    [Abstract] [Full Text] [Related] [New Search]