These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conductance gaps in graphene ribbons designed by molecular aggregations.
    Author: Rosales L, Pacheco M, Barticevic Z, Latgé A, Orellana PA.
    Journal: Nanotechnology; 2009 Mar 04; 20(9):095705. PubMed ID: 19417501.
    Abstract:
    The transport properties of graphene nanoribbons with linear benzene-based molecules pinned at the ribbon edges are studied. The systems are described by a single pi-band tight-binding Hamiltonian and by using the Green functions formalism based on real-space renormalization techniques. Different configurations have been considered, such as two and three attached molecules separated by a variable distance d, and the case of a finite array of molecules attached to the ribbon in different geometries (one-side and alternated sequence). In the latter case the conductance behavior is compared with the case of a molecular superlattice-like structure. In these hybrid systems of ribbons with a large number of regular attached foreign structures, we have shown the formation of well-defined energy gaps for which the conductance is completely suppressed. These gaps can be tuned by varying the number, relative distance, and length of the attached molecules. An analysis is performed to understand the nature of the conductance gap and its relation with the foreign molecular structures, providing a mechanism to delineate novel molecular sensors.
    [Abstract] [Full Text] [Related] [New Search]