These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The influence of a novel transmission detector on 6 MV x-ray beam characteristics. Author: Venkataraman S, Malkoske KE, Jensen M, Nakonechny KD, Asuni G, McCurdy BM. Journal: Phys Med Biol; 2009 May 21; 54(10):3173-83. PubMed ID: 19420428. Abstract: The purpose of this work was to investigate the influence of a new transmission detector on 6 MV x-ray beam properties. The device, COMPASS (IBA Dosimetry, Germany), contains 1600 plane parallel ionization chambers with a detector spacing of 6.5 mm and an active volume of 0.02 cm3. Surface dose measurements were carried out using a Markus chamber and radiochromic film for a range of field sizes and source-to-surface distances (SSDs). The surface dose and dose in the build-up region for COMPASS fields were compared to open fields. For moderately narrow beam geometric conditions, the increase in surface dose was small. For the largest field size investigated (20x20 cm2) at a 90 cm SSD, the surface dose with the detector was 34.9% versus 26.8% in the open field. However, the increase in surface dose in COMPASS fields was less than that observed with a standard block tray in the field (38.7% in the above example). It was found that beyond dmax, the difference in relative dose (profiles and PDDs) between open and COMPASS fields was insignificant. The mean transmission factor of the detector was 0.967 (standard deviation=0.002) measured over a range of field sizes from 3x3 to 20x20 cm2 at SSDs from 70 cm to 90 cm. In summary, the transmission detector was found to increase the relative dose in the buildup region but had a negligible effect on the beam parameters beyond dmax.[Abstract] [Full Text] [Related] [New Search]