These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Author: Alaghemandi M, Algaer E, Böhm MC, Müller-Plathe F. Journal: Nanotechnology; 2009 Mar 18; 20(11):115704. PubMed ID: 19420452. Abstract: The thermal conductivity of single-walled and multi-walled carbon nanotubes has been investigated as a function of the tube length L, temperature and chiral index using non-equilibrium molecular dynamics simulations. In the ballistic-diffusive regime the thermal conductivity follows a L(alpha) law. The exponent alpha is insensitive to the diameter of the carbon nanotube; alpha approximately 0.77 has been derived for short carbon nanotubes at room temperature. The temperature dependence of the thermal conductivity shows a peak before falling at higher temperatures (>500 K). The phenomenon of thermal rectification in nanotubes has been investigated by gradually changing the atomic mass in the tube-axial direction as well as by loading extra masses on the terminal sites of the tube. A higher thermal conductivity occurs when heat flows from the low-mass to the high-mass region.[Abstract] [Full Text] [Related] [New Search]