These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient short interference RNA delivery to tumor cells using a combination of octaarginine, GALA and tumor-specific, cleavable polyethylene glycol system.
    Author: Sakurai Y, Hatakeyama H, Akita H, Oishi M, Nagasaki Y, Futaki S, Harashima H.
    Journal: Biol Pharm Bull; 2009 May; 32(5):928-32. PubMed ID: 19420766.
    Abstract:
    We recently developed a multifunctional envelope-type nano device (MEND) for efficient nucleic acid delivery. Here, we report on the development of an octaarigine (R8)-modified MEND encapsulating small interfering RNA (siRNA) with a tumor-specific, cleavable, polyethylene glycol (PEG)-lipid (PPD). We first determined the optimal concentration of R8 and pH-sensitive fusogenic peptide (GALA) on the lipid envelope of MEND (R8/GALA-MEND). Then, we examined the combination of optimized R8/GALA-MEND with a PEG-lipid. When a conventional PEG-lipid was used, the R8/GALA-MEND failed to knockdown expression of the target gene. On the other hand, PPD-modified R8/GALA-MEND exhibited efficient silencing activity to the level of the PEG-unmodified R8/GALA-MEND. In addition, we compared a R8/GALA-MEND with a MEND composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) that is a conventional cationic lipid used as a lipoplex component. The knockdown ability of the R8/GALA-MEND was much higher than that of the DOTAP-based MEND at the dose that is commonly employed in in vitro siRNA transfection. These results demonstrate that the R8/GALA-MEND is a promising delivery system for the transfer of siRNA to tumor cells.
    [Abstract] [Full Text] [Related] [New Search]