These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Formation of flavone di-O-glucosides using a glycosyltransferase from Bacillus cereus. Author: Ahn BC, Kim BG, Jeon YM, Lee EJ, Lim Y, Ahn JH. Journal: J Microbiol Biotechnol; 2009 Apr; 19(4):387-90. PubMed ID: 19420995. Abstract: Microbial UDP-glycosyltransferases can convert many small lipophilic compounds into glycons using uridinediphosphate- activated sugars. The glycosylation of flavonoids affects solubility, stability, and bioavailability. The gene encoding the UDP-glycosyltransferase from Bacillus cereus, BcGT-3, was cloned by PCR and sequenced. BcGT-3 was expressed in Escherichia coli BL21 (DE3) with a glutathione S-transferase tag and purified using a glutathione Stransferase affinity column. BcGT-3 was tested for activity on several substrates including genistein, kaempferol, luteolin, naringenin, and quercetin. Flavonols were the best substrates for BcGT-3. The enzyme dominantly glycosylated the 3-hydroxyl group, but the 7-hydroxyl group was glycosylated when the 3-hydroxyl group was not available. The kaempferol reaction products were identified as kaempferol-3-O-glucoside and kaempferol- 3,7-O-diglucoside. Kaempferol was the most effective substrate tested. Based on HPLC, LC/MS, and NMR analyses of the reaction products, we conclude that BcGT-3 can be used for the synthesis of kaempferol 3,7-O-diglucose.[Abstract] [Full Text] [Related] [New Search]