These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of adenosine 5'-triphosphate (ATP)-gated P2X(4) receptors on tracheal smooth muscle cells.
    Author: Nagaoka M, Nara M, Tamada T, Kume H, Oguma T, Kikuchi T, Zaini J, Moriya T, Ichinose M, Tamura G, Hattori T.
    Journal: Respir Physiol Neurobiol; 2009 Mar 31; 166(1):61-7. PubMed ID: 19429520.
    Abstract:
    We examined the effects of extracellular adenosine 5'-triphosphate (ATP) on single airway smooth muscle (ASM) cells from porcine trachea using a patch-clamp technique. ATP induced a sustained inward current. Phospholipase C inhibitor U-73122 failed to inhibit the current, suggesting the involvement of P2X receptor. A specific effecter of P2X(4), ivermectin, augmented the current indicating the existence of P2X(4) receptors. Immunohistochemistry and reverse transcription/polymerase chain reaction analysis and Western blot analysis also showed the distribution of the P2X(4) receptors. The inward current was reduced by SKF-96365, an inhibitor of both voltage-dependent Ca(2+) channels (VDCCs) and voltage-independent Ca(2+) channels, although a VDCC antagonist, verapamil, did not affect the current. SKF-96365 caused complete suppression of both the increase in the intracellular Ca(2+) concentration and the contraction of ASM cells induced by ATP. Our results demonstrate that P2X(4) receptors exist on ASM and that the receptors are responsible for Ca(2+) influx. These findings suggest that the Ca(2+) influx regulated by P2X(4) receptors plays an important role in ASM contraction by a pathway distinct from VDCC.
    [Abstract] [Full Text] [Related] [New Search]