These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional dissection of a multimodular polypeptide of the pikromycin polyketide synthase into monomodules by using a matched pair of heterologous docking domains. Author: Yan J, Gupta S, Sherman DH, Reynolds KA. Journal: Chembiochem; 2009 Jun 15; 10(9):1537-43. PubMed ID: 19437523. Abstract: The pikromyin polyketide synthase (PKS) in Streptomyces venezulae is comprised of a loading module and six extension modules, which generate the corresponding 14-membered macrolactone product. PikAI is a multimodular component of this PKS and houses both the loading domain and the first two extension modules, joined by short intraprotein linkers. We have shown that PikAI can be separated into two proteins at either of these linkers, only when matched pairs of docking domains (DDs) from a heterologous modular phoslactomycin PKS are used in place of the intraprotein linker. In both cases the yields of pikromycin produced by the S. venezuelae mutant were 50% of that of a S. venezuelae strain expressing the native trimodular PikAI. This observation provides the first demonstration that such separations do not dramatically impact the efficiency of the entire in vivo biosynthetic process. Expression of module 2 as a monomodular protein fused to a heterologous N-terminal docking domain was also observed to give almost a tenfold improvement in the in vivo generation of pikromycin from a synthetic diketide intermediate. These results demonstrate the utility of DDs to manipulate biosynthetic processes catalyzed by modular PKSs and the quest to generate novel polyketide products.[Abstract] [Full Text] [Related] [New Search]