These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater.
    Author: Danzl E, Sei K, Soda S, Ike M, Fujita M.
    Journal: Int J Environ Res Public Health; 2009 Apr; 6(4):1472-84. PubMed ID: 19440529.
    Abstract:
    A group of compounds structurally similar to bis(4-hydroxyphenyl)propane (bisphenol A, BPA) are called bisphenols (BPs), and some of them can partially replace BPA in industrial applications. The production and consumption of BPs other than BPA, especially those of bis(4-hydroxyphenyl)methane (bisphenol F, BPF) and bis(4-hydroxyphenyl)sulfone (bisphenol S, BPS), have increased recently, leading to their detection as contaminants in the aquatic environment. The three compounds tested 100% positive for estrus response in 1936 and concerns about their health risks have been increasing. Abundant data on degradation of bisphenols (BPs) has been published, but results for biodegradation of BPs in seawater are lacking. However, several research groups have focused on this topic recently. In this study, the biodegradation behaviors of three BPs, namely BPA, BPF and BPS, in seawater were investigated using TOC Handai (TOC, potential test) and river (sea) die-away (SDA, simulation test) methods, which are both a kind of river-die-away test. The main difference between the tests is that indigenous microcosms remain in the sampled raw seawater for the SDA experiments, but they are removed through filtration and dispersed into artificial seawater for the TOC experiments. The BPs, except for BPS, were degraded using both methods. The SDA method produced better biodegradation results than the TOC method in terms of degradation time (both lag and degradation periods). Biodegradation efficiencies were measured at 75-100% using the SDA method and 13-63% using the TOC method. BPF showed better degradation efficiency than BPA, BPF was > 92% and BPA 83% depleted according to the SDA tests. BPS degradation was not observed. As a conclusion, the biodegradability of the three BPs in seawater could be ranked as BPF > BPA >> BPS. BPF is more biodegradable than BPA in seawater and BPS is more likely to accumulate in the aquatic environment. BPS poses a lower risk to human health and to the environment than BPA or BPF but it is not amenable to biodegradation and might be persistent and become an ecological burden. Thus other degradation methods need to be found for the removal of BPS in the environment.
    [Abstract] [Full Text] [Related] [New Search]