These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A method for (13)C-labeling of metabolic carbohydrates within French bean leaves (Phaseolus vulgaris L.) for decomposition studies in soils. Author: Girardin C, Rasse DP, Biron P, Ghashghaie J, Chenu C. Journal: Rapid Commun Mass Spectrom; 2009 Jun; 23(12):1792-800. PubMed ID: 19441048. Abstract: The molecular composition of plant residues is suspected to largely govern the fate of their constitutive carbon (C) in soils. Labile compounds, such as metabolic carbohydrates, are affected differently from recalcitrant and structural compounds by soil-C stabilisation mechanisms. Producing (13)C-enriched plant residues with specifically labeled fractions would help us to investigate the fate in soils of the constitutive C of these compounds. The objective of the present research was to test (13)C pulse chase labeling as a method for specifically enriching the metabolic carbohydrate components of plant residues, i.e. soluble sugars and starch. Bean plants were exposed to a (13)CO(2)-enriched atmosphere for 0.5, 1, 2, 3 and 21 h. The major soluble sugars were then determined on water-soluble extracts, and starch on HCl-hydrolysable extracts. The results show a quick differential labeling between water-soluble and water-insoluble compounds. For both groups, (13)C-labeling increased linearly with time. The difference in delta(13)C signature between water-soluble and insoluble fractions was 7 per thousand after 0.5 h and 70 per thousand after 21 h. However, this clear isotopic contrast masked a substantial labeling variability within each fraction. By contrast, metabolic carbohydrates on the one hand (i.e. soluble sugars + starch) and other fractions (essentially cell wall components) on the other hand displayed quite homogeneous signatures within fractions, and a significant difference in labeling between fractions: delta(13)C = 414 +/- 3.7 per thousand and 56 +/- 5.5 per thousand, respectively. Thus, the technique generates labeled plant residues displaying contrasting (13)C-isotopic signatures between metabolic carbohydrates and other compounds, with homogenous signatures within each group. Metabolic carbohydrates being labile compounds, our findings suggest that the technique is particularly appropriate for investigating the effect of compound lability on the long-term storage of their constitutive C in soils.[Abstract] [Full Text] [Related] [New Search]