These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Plasma membrane depolarization and Na,K-ATPase impairment induced by mitochondrial toxins augment leukemia cell apoptosis via a novel mitochondrial amplification mechanism.
    Author: Yin W, Li X, Feng S, Cheng W, Tang B, Shi YL, Hua ZC.
    Journal: Biochem Pharmacol; 2009 Jul 15; 78(2):191-202. PubMed ID: 19442964.
    Abstract:
    Na,K-ATPase is a ubiquitous transmembrane protein that regulates and maintains the intracellular Na(+) and K(+) gradient necessary for cell homeostasis. Recently, the importance of this pump in external stimuli-induced leukemia cell apoptosis has been increasingly appreciated, however, the exact role of Na,K-ATPase in mitochondrial apoptotic pathway still remains little understood. In this study, we found mitochondrial toxin rotenone caused a rapid mitochondrial membrane potential (MMP) collapse in Jurkat cells followed by plasma membrane depolarization (PMP). Similar results were also obtained in human U937 cells and non-cancerous mouse primary T cells. Rotenone-induced PMP depolarization occurred before apoptosis and well correlated with Na,K-ATPase impairment. To understand the mechanisms, Jurkat cells with mtDNA depletion and catalase overexpression were used. The results demonstrated that both PMP depolarization and Na,K-ATPase impairment induced by rotenone were regulated by mitochondrial H(2)O(2) and Bcl-2. Finally, Na,K-ATPase suppression by ouabain greatly accelerated and enhanced mitochondrial toxins-induced cells apoptosis in Jurkat, U937 and primary T cells. In sum, by using leukemia cells and mouse primary T cells, we confirmed that mitochondria-to-Na,K-ATPase and PMP depolarization might represent a novel mechanism for mitochondria to amplify death signals in the initiation stage of cells apoptosis induced by mitochondrial toxins.
    [Abstract] [Full Text] [Related] [New Search]