These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deep inspirations protect against airway closure in nonasthmatic subjects.
    Author: Chapman DG, Berend N, King GG, McParland BE, Salome CM.
    Journal: J Appl Physiol (1985); 2009 Aug; 107(2):564-9. PubMed ID: 19443748.
    Abstract:
    The mechanism by which deep inspirations protect against increased airway responsiveness in nonasthmatic subjects is not known. The aim was to investigate the role of airway closure and airway narrowing in deep inspiration bronchoprotection. Twelve nonasthmatic and nine asthmatic subjects avoided deep inspirations (DI) for 20 min, then took five DI expired to functional residual capaciy (DI-FRC) or, on a separate day, no DI (no DI) before inhaling a single dose of methacholine. On another day, eight nonasthmatic subjects took five DI expired to residual volume (DI-RV). Peripheral airway function was measured by respiratory system reactance (Xrs), using the forced oscillation technique, and by forced vital capacity (FVC) as an index of airway closure. Respiratory system resistance (Rrs) and forced expiratory volume in 1 s (FEV1)/FVC were measured as indexes of airway narrowing. In nonasthmatic subjects, DI-FRC reduced the response measured by FEV1 (P=0.019), Xrs (P=0.02), and FVC (P=0.0005) but not by Rrs (P=0.15) or FEV1/FVC (P=0.52) compared with no DI. DI-RV had a less protective effect than DI-FRC on response measured by FEV1 (P=0.04) and FVC (P=0.016). There was no difference between all protocols when the response was measured by Xrs (P=0.20), Rrs (P=0.88), or FEV1/FVC (P=0.88). DI had no effect on methacholine response in asthmatic subjects. DI protect against airway responsiveness through an effect on peripheral airways involving reduced airway closure. The protective effect of DI on FEV1 and FVC was abolished by expiration to residual volume. We speculate that the reduced airway closure is due to reduced baseline ventilation heterogeneity and/or reduced airway surface tension.
    [Abstract] [Full Text] [Related] [New Search]