These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of cellular contractile force in response to mechanical stretch by diphosphorylation of myosin regulatory light chain via RhoA signaling cascade. Author: Mizutani T, Kawabata K, Koyama Y, Takahashi M, Haga H. Journal: Cell Motil Cytoskeleton; 2009 Jul; 66(7):389-97. PubMed ID: 19444895. Abstract: Fibroblasts regulate their contractile force in response to external stretch; however, the detailed mechanism by which the force is regulated is unclear. Here, we show that diphosphorylation and dephosphorylation of myosin regulatory light chain (MRLC) are involved in the stretch-induced force response. Cellular stiffness, which reflects the cellular contractile force, under external stretch was measured by mechanical-scanning probe microscopy. Fibroblasts (NIH-3T3) expressing green fluorescent protein (GFP)-tagged mutant-type MRLC (MRLC(T18A)-GFP), which cannot be diphosphorylated, did not show any stretch-induced stiffness response, whereas the stiffness in cells expressing GFP-tagged wild-type MRLC (MRLC(WT)-GFP) increased immediately after the stretch and subsequently decreased after 1-2 h. Urea-PAGE western blot analysis showed that the proportion of diphosphorylated MRLC (PP-MRLC) transiently increased after the stretch and decreased after 1-2 h. Dominant-negative RhoA (RhoA(N19))-expressing cells did not show the stiffness response to the stretch, whereas wild-type RhoA-expressing cells did. It was concluded that the cellular force response originates in the stretch-induced diphosphorylation and dephosphorylation of MRLC and is regulated via the RhoA signaling cascade.[Abstract] [Full Text] [Related] [New Search]