These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design, synthesis and pharmacological evaluation of new 1-[3-(4-arylpiperazin-1-yl)-2-hydroxy-propyl]-3,3-diphenylpyrrolidin-2-one derivatives with antiarrhythmic, antihypertensive, and alpha-adrenolytic activity. Author: Kulig K, Sapa J, Nowaczyk A, Filipek B, Malawska B. Journal: Eur J Med Chem; 2009 Oct; 44(10):3994-4003. PubMed ID: 19447527. Abstract: A series of novel arylpiperazines bearing a 3,3-diphenylpyrrolidin-2-one fragment were synthesized and evaluated for their binding affinity for alpha(1)- and alpha(2)-adrenoceptors (ARs), as well as their antiarrhythmic, and antihypertensive activities. The highest affinity for the alpha(1)-AR was displayed by 1-{3-[4-(2-ethoxy-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-3,3-diphenylpyrrolidin-2-one (7), which binds with a pK(i)=7.28. The highest affinity for the alpha(2)-AR was shown by 1-{3-[4-(2-methoxy-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-3,3-diphenylpyrrolidin-2-one (5), which binds with a pK(i)=6.68. Compound 7 was additionally evaluated in in vitro functional tests for its affinity for alpha(1B)- and alpha(1D)-AR, which gave pA(2) alpha(1B)=6.55 and pA(2) alpha(1D)=7.26. Among the compounds tested, compound 7 also had the highest prophylactic antiarrhythmic activity in adrenaline-induced arrhythmia in anaesthetized rats. Its ED(50) value was 1.1mg/kg (i.v.). The compounds significantly decreased systolic and diastolic pressure in normotensive anaesthetized rats at doses of 2.5-5.0mg/kg (i.v.) and their hypotensive effects lasted for longer than 1h. It was found that the introduction of two phenyl ring substituents into the 3rd position of the pyrrolidin-2-one fragment gave compounds with affinity for both alpha(1)- and alpha(2)-AR. The substitution of the 2nd position in the phenyl piperazinyl fragment of the molecule was crucial for activity. To determine detailed information concerning the structure-activity relationship, a preliminary molecular modeling study was undertaken.[Abstract] [Full Text] [Related] [New Search]