These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and structure-activity relationships of C-glycosylated oxadiazoles as inhibitors of glycogen phosphorylase. Author: Tóth M, Kun S, Bokor E, Benltifa M, Tallec G, Vidal S, Docsa T, Gergely P, Somsák L, Praly JP. Journal: Bioorg Med Chem; 2009 Jul 01; 17(13):4773-85. PubMed ID: 19450985. Abstract: A series of per-O-benzoylated 5-beta-D-glucopyranosyl-2-substituted-1,3,4-oxadiazoles was prepared by acylation of the corresponding 5-(beta-D-glucopyranosyl)tetrazole. As an alternative, oxidation of 2,6-anhydro-aldose benzoylhydrazones by iodobenzene I,I-diacetate afforded the same oxadiazoles. 1,3-Dipolar cycloaddition of nitrile oxides to per-O-benzoylated beta-D-glucopyranosyl cyanide gave the corresponding 5-beta-D-glucopyranosyl-3-substituted-1,2,4-oxadiazoles. The O-benzoyl protecting groups were removed by base-catalyzed transesterification. The 1,3,4-oxadiazoles were practically inefficient as inhibitors of rabbit muscle glycogen phosphorylase b while the 1,2,4-oxadiazoles displayed inhibitory activities in the micromolar range. The best inhibitors were the 5-beta-D-glucopyranosyl-3-(4-methylphenyl- and -2-naphthyl)-1,2,4-oxadiazoles (K(i)=8.8 and 11.6 microM, respectively). A detailed analysis of the structure-activity relationships is presented.[Abstract] [Full Text] [Related] [New Search]