These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [The synthesis and localization of crystallins in different cell compartments of the crystalline lens in adult frogs: immunoautoradiographic and immunofluorescent research]. Author: Simirskiĭ VN, Fedtsova NG, Aleĭnikova KS, Mikhaĭlov AT. Journal: Ontogenez; 1991; 22(4):381-93. PubMed ID: 1945270. Abstract: The purpose of this study was to analyze immunochemically the synthesis and distribution of tissue-specific proteins, i.e., alpha-, beta- gamma- and rho-crystallins, in morphologically distinct regions of the frog (Rana temporaria L.) lens which consist of cells at various stages of differentiation, maturation and aging. Five such cell compartments can be distinguished in the lens: (1) central zone of lens epithelium (stem/clonogenic cells); (2) equatorial epithelial cells (differentiating cells); (3) lens fibers of the outer cortex (post-mitotic differentiated cells); (4) lens fibers of the deep cortex (cells without nuclei at terminal stage of differentiation); and (5) cells of the lens "nucleus" (cells formed during embryogenesis). Intact lenses and isolated lens epithelium were cultured in vitro in the presence of 35S-methionine. Then lens epithelium, outer and deep cortex, and lens nucleus were extracted with buffered saline and extracts used for immunoautoradiography. Distribution of crystallins in paraffin sections of the whole lens or isolated lens epithelium was studied using indirect immunofluorescence. Synthesis of alpha-crystallins was observed in lens epithelium and cortex, but not in lens nucleus. According to immunohistochemistry, these proteins were absent from central part of the lens epithelium: positive fluorescence was observed only in elongating cells at its periphery and in lens fibers. The data on beta-crystallins are similar except that synthesis of these proteins (traces) was detected also in lens nucleus. Synthesis of gamma-crystallins was detected in lens cortex and nucleus (traces) but not in epithelium. Immunohistochemistry showed that these proteins are absent from all regions of lens epithelium and found only in fiber cells of cortex and nucleus. Rho-crystallin was synthesized in all cell compartments of the adult lens, and all lens cells contained this protein. Our results show that cells of central lens epithelium do not contain alpha- beta- or gamma-crystallins (or the rate of their synthesis is insignificant). While cells are moving towards lens equator and elongating, synthesis of alpha- and beta-crystallins is activated. Gamma-crystallins are synthesized later, first in young lens fibers near lens equator. During embryonic development in amphibia, in contrast, gamma- and beta-crystallins are detected at earlier stages than alpha- and rho-crystallins (Mikhaĭlov et al., 1988). These data suggest that different mechanisms are involved in differentiation on lens fibers from embryonic precursor cells, on one hand, and from epithelial stem cells of adult lens, on the other.[Abstract] [Full Text] [Related] [New Search]