These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo validation of biological responses of bFGF released from microspheres formulated by blending poly-lactide-co-glycolide and poly(ethylene glycol)-grafted-chitosan in hamster cheek pouch microcirculatory models. Author: Falabella CA, Jiang H, Frame MD, Chen W. Journal: J Biomater Sci Polym Ed; 2009; 20(7-8):903-22. PubMed ID: 19454159. Abstract: Microspheres formulated from blending poly(lactide-co-glycolide) (PLGA) and poly(ethylene glycol)-grafted-chitosan (PEG-g-CHN), using a modified in-emulsion-solvent-evaporation method, were investigated for the delivery of protein. A model protein, bovine serum albumin (BSA), was incorporated into the PLGA/PEG-g-CHN microspheres and both initial burst and release kinetics could be modulated by varying the PEG-g-CHN content. Basic fibroblast growth factor (bFGF) was formulated into the microspheres containing 5% PEG-g-CHN and the bFGF contents in the releasates were determined by a receptor-based ELISA with their in vitro bioactivities validated by fibroblast cell culture. The in vivo effect of the bFGF microspheres formulation was evaluated in a hamster cheek pouch model using a 7 day exposure (e.g., before significant vascular remodeling was expected). Using intravital microscopy, the tissue showed no evidence of inflammation with any formulation; deliberate activation of a preconditioning response linked to inflammation was attenuated by BSA microspheres alone. Vasoactive responses (receptor-dependant and independent constriction and dilation) linked to nitric oxide were attenuated, and constriction to endothelin was enhanced in bFGF and not BSA containing microspheres. PLGA/PEG-g-CHN blended microspheres were also demonstrated to be non-inflammatory and non-thrombogenic in vivo by observing the vascular changes in the cheek pouch. In conclusion, the addition of PEG-g-CHN to PLGA microspheres can serve as a sustained delivery vehicle for bFGF and the released protein provides vasoactive changes consistent with chronic bFGF exposure.[Abstract] [Full Text] [Related] [New Search]