These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Degradation of the potato glycoalkaloid alpha-solanine in three agricultural soils. Author: Jensen PH, Pedersen RB, Svensmark B, Strobel BW, Jacobsen OS, Hansen HC. Journal: Chemosphere; 2009 Aug; 76(8):1150-5. PubMed ID: 19457538. Abstract: The toxic glycoalkaloids produced by the potato plant (Solanum tuberosum L.) have previously been found in upper soil from a potato field during several months. Further insight into the fate of the glycoalkaloids is needed, as only little information about their degradation in soil is available. Degradation of the glycoalkaloid, alpha-solanine, has been followed for 42d in three agricultural soils with common texture and carbon contents. A similar degradation pattern was found in all soils, and the kinetics was well described by a sum of two first-order equations. Overall, degradation rates for the initial first reaction were in the range 0.22-1.64d(-1). Estimated half-lives were in the range 1.8-4.1d for the three top soils at 15 degrees C; the fastest degradation was observed in the sandy soil. The major proportion of alpha-solanine in the sandy soil was degraded by the fast process, while the proportion was lower for the two other soils. Fast degradation appeared to be related to the presence of low amount of sorbents. Additionally, degradation was followed at 5 degrees C in A- and C-horizon soil from the sandy location, and for both horizons the half-lives were of similar length (4.7-8.7d). For the slow process, degradation rates were in the range 0.000-0.123d(-1), and residuals were still present in all soils and all temperatures at the end of the experiment (d 42). Overall, fast degradation was found in both top- and subsoil even at low temperatures, and the risk for alpha-solanine leaching to the groundwater appears to be low.[Abstract] [Full Text] [Related] [New Search]