These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression and characterization of jingzhaotoxin-34, a novel neurotoxin from the venom of the tarantula Chilobrachys jingzhao.
    Author: Chen J, Zhang Y, Rong M, Zhao L, Jiang L, Zhang D, Wang M, Xiao Y, Liang S.
    Journal: Peptides; 2009 Jun; 30(6):1042-8. PubMed ID: 19463735.
    Abstract:
    Jingzhaotoxin-34 (JZTX-34) is a 35-residue polypeptide from the venom of Chinese tarantula Chilobrachys jingzhao. Our previous work reported its full-length cDNA sequence encoding a precursor with 87 residues. In this study we report the protein expression and biological function characterization. The toxin was efficiently expressed by the secretary pathway in yeast. Under whole-cell patch-clamp mode, the expressed JZTX-34 was able to inhibit tetrodotoxin-sensitive (TTX-S) sodium currents (IC(50) approximately 85 nM) while having no significant effects on tetrodotoxin-resistant (TTX-R) sodium currents on rat dorsal root ganglion neurons. The inhibition of TTX-S sodium channels was completely reversed by strong depolarization (+120 mV). Toxin treatment altered neither channel activation and inactivation kinetics nor recovery rate from inactivation. However, it is interesting to note that in contrast to huwentoxin-IV, a recently identified receptor site-4 toxin from Ornithoctonus huwena venom, 100 nM JZTX-34 caused a negative shift of steady-state inactivation curve of TTX-S sodium channels by approximately 10 mV. The results indicated that JZTX-34 might inhibit mammalian sensory neuronal sodium channels through a mechanism similar to HWTX-IV by trapping the IIS4 voltage sensor in the resting conformation, but their binding sites should not overlay completely.
    [Abstract] [Full Text] [Related] [New Search]