These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential actions of VEGF-A isoforms on perichondrial angiogenesis during endochondral bone formation. Author: Takimoto A, Nishizaki Y, Hiraki Y, Shukunami C. Journal: Dev Biol; 2009 Aug 15; 332(2):196-211. PubMed ID: 19464280. Abstract: During endochondral bone formation, vascular invasion initiates the replacement of avascular cartilage by bone. We demonstrate herein that the cartilage-specific overexpression of VEGF-A(164) in mice results in the hypervascularization of soft connective tissues away from cartilage. Unexpectedly, perichondrial tissue remained avascular in addition to cartilage. Hypervascularization of tissues similarly occurred when various VEGF-A isoforms were overexpressed in the chick forelimb, but also in this case perichondrial tissue and cartilage were completely devoid of vasculature. However, following bony collar formation, anti-angiogenic properties in perichondrial tissue were lost and perichondrial angiogenesis was accelerated by VEGF-A(146), VEGF-A(166), or VEGF-A(190). Once the perichondrium was vascularized, osteoclast precursors were recruited from the circulation and the induction of MMP9 and MMP13 can be observed in parallel with the activation of TGF-beta signaling. Neither perichondrial angiogenesis nor the subsequent cartilage vascularization was found to be accelerated by the non-heparin-binding VEGF-A(122) or by the VEGF-A(166)DeltaE(162)-R(166) mutant lacking a neuropilin-binding motif. Hence, perichondrial angiogenesis is a prerequisite for subsequent cartilage vascularization and is differentially regulated by VEGF-A isoforms.[Abstract] [Full Text] [Related] [New Search]