These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Solution properties of the acrylamide-modified cellulose polyelectrolytes in aqueous solutions.
    Author: Song Y, Zhou J, Li Q, Lue A, Zhang L.
    Journal: Carbohydr Res; 2009 Jul 27; 344(11):1332-9. PubMed ID: 19464674.
    Abstract:
    A novel cellulose-based polyelectrolyte (AM-C) containing acylamino (DS=0.625) and carboxyl (DS=0.148) groups was homogeneously synthesized from cellulose with acrylamide in NaOH/urea aqueous solutions. Solution properties of AM-C in aqueous solutions were investigated by laser light scattering, rheometry, and viscometry. The results indicated that AM-C could form large aggregates spontaneously in water with or without the addition of salts by the strong hydrogen bonds and electrostatic interaction between acylamino and carboxyl groups. Steady-shear flow study showed a Newtonian behavior of the solutions in the dilute regime while a shear-thinning behavior as the concentration increases. The critical concentration (c(e)) for transition from dilute to concentrated solution was determined to be 0.7wt%. Aqueous solutions of AM-C displayed good thermo-stability, reversible liquid-like characters attributing to the chemical modification. The derivation from Cox-Merz rule at relatively low concentration was related to the co-existence of single chain and large aggregates of AM-C in dilute regime. As the polymer concentration increased, the AM-C system was transformed into a homogeneous entanglement structure, resulting in the disappearance of deviations from the Cox-Merz rule.
    [Abstract] [Full Text] [Related] [New Search]