These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of exopolysaccharides on the hydrolysis of beta-lactoglobulin by Lactobacillus acidophilus CRL 636 in an in vitro gastric/pancreatic system. Author: Pescuma M, Hébert EM, Dalgalarrondo M, Haertlé T, Mozzi F, Chobert JM, Font de Valdez G. Journal: J Agric Food Chem; 2009 Jun 24; 57(12):5571-7. PubMed ID: 19469473. Abstract: An analysis of the peptides generated by hydrolysis of BLG by nonproliferating cells of the strain Lactobacillus acidophilus CRL 636 was carried out. The effect of polysaccharides (pectin, and two EPS synthesized by two Streptococcus thermophilus strains, EPS1190 and EPS804) on BLG digestibility using an in vitro gastric/pancreatic system was analyzed. Polysaccharides are commonly used in the dairy industry to improve food texture; these hydrocolloids may interact with proteins, affecting their digestibility. Nonproliferating cells of Lb. acidophilus CRL 636 were able to hydrolyze 52% of BLG. Twenty-six resulting peptides with molecular masses in the range 544-4119 Da were identified by LC-MS/MS. These peptides resulted mostly from the hydrolysis of the more accessible N-terminal part of BLG. Degradation of BLG by pepsin was poor (8%). When BLG was previously hydrolyzed by Lb. acidophilus CRL 636, peptic hydrolysis was of 54.8%, while when pectin and EPS1190 were added, hydrolysis was higher (58.2 and 57.2%, respectively). Peptides crossing 8 kDa dialysis membranes after trypsin/chymotrypsin hydrolysis were analyzed by HPSEC. The produced peptides were smaller when BLG was hydrolyzed previously by the Lb. acidophilus strain. Moreover, in the presence of pectin, the amount of the larger peptide (3.5 kDa) observed in the size exclusion chromatograms was considerably decreased. Our studies showed that prehydrolysis of BLG by Lb. acidophilus CRL 636 had a positive influence on BLG digestibility and that polysaccharides may change the peptide profile yielded by trypsin/chymotrypsin hydrolysis, releasing smaller size peptides, which are known to be less immune-reactive. Moreover, Lb. acidophilus CRL 636 was able to hydrolyze the main epitopes (41-60, 102-124, and 149-162) of BLG, reducing its allergenic content.[Abstract] [Full Text] [Related] [New Search]