These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Study of environmental radioactivity in Palestine by in situ gamma-ray spectroscopy. Author: Lahham A, Al-Masri H, Judeh A. Journal: Radiat Prot Dosimetry; 2009 Jul; 135(1):43-6. PubMed ID: 19470444. Abstract: This work presents qualitative and quantitative evaluation of environmental radioactivity in the central and southern areas of the West Bank, Palestine. For this purpose, the technology of in situ gamma-ray spectroscopy is used with a scintillation of 7.6 x 7.6 cm NaI(Tl) crystal connected to multichannel analyzer InSpector 2000 from Canberra instruments and laptop computer. Gamma-ray spectra were collected using the detector placed 1 m above the ground surface. Calibration of the detection system for in situ measurements of gamma-emitting radionuclides in open terrain is performed theoretically using Monte Carlo techniques. Measurements are conducted in 18 locations in 3 regions across the West Bank. The vast majority of identified radionuclides are naturally occurring gamma-emitting sources (the decay products of (238)U, (232)Th and (40)K). The only identified anthropogenic radionuclide is (137)Cs. Activity concentrations of (40)K, (238)U, (232)Th as well as the total outdoor gamma dose rate from these radionuclides were determined from the gamma-ray spectra. The highest activity concentrations of the three primordial radionuclides were 203 Bq kg(-1) for (40)K, 32 Bq kg(-1) for (238)U and 30 Bq kg(-1) for (232)Th. The total outdoor gamma dose rate calculated for the whole study area at 1 m above ground ranged from 6 to 30 nGy h(-1) with a mean of 18 +/- 7 nGy h(-1), which represents about 30% of the world average value.[Abstract] [Full Text] [Related] [New Search]