These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: K+ secretion in the rat kidney: Na+ channel-dependent and -independent mechanisms.
    Author: Frindt G, Palmer LG.
    Journal: Am J Physiol Renal Physiol; 2009 Aug; 297(2):F389-96. PubMed ID: 19474187.
    Abstract:
    Renal Na(+) and K(+) excretion was measured in rats with varying dietary K(+) intake. The requirement for channel-mediated distal nephron Na(+) reabsorption was assessed by infusing the animals with the K(+)-sparing diuretic amiloride via osmotic minipumps. At infusion rates of 2 nmol/min, the concentration of amiloride in the urine was 38 microM, corresponding to concentrations of 9-23 microM in the distal tubular fluid, sufficient to block >98% of Na(+) transport through apical Na(+) channels (ENaC). With a control K(+) intake (0.6% KCl), amiloride reduced K(+) excretion rates (U(K)V) from 0.85 +/- 0.15 to 0.05 +/- 0.01 micromol/min during the first 2 h of infusion, suggesting that distal nephron K(+) secretion was completely dependent on the activity of Na(+) channels. When K(+) intake was increased by feeding overnight with a diet containing 10% KCl, amiloride reduced U(K)V from 7.5 +/- 0.7 to 1.3 +/- 0.1 micromol/min despite an increased plasma K(+) of 9 mM, again suggesting a major but not exclusive role for the Na(+) channel-dependent pathway of K(+) secretion. The maximal measured rates of amiloride-sensitive K(+) excretion correspond well with estimates based on apical K(+) channel activity in distal nephron segments. However, when the animals were adapted to the high-K(+) diet for 7-9 days, the diuretic decreased U(K)V less, from 6.1 +/- 0.6 to 3.0 +/- 0.8 micromol/min, indicating an increasing fraction of K(+) excretion that was independent of Na(+) channels. This indicates the upregulation of a Na(+) channel-independent mechanism for secreting K(+).
    [Abstract] [Full Text] [Related] [New Search]