These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A new fluorescent oligonucleotide probe for in situ detection of s-triazine-degrading Rhodococcus wratislaviensis in contaminated groundwater and soil samples.
    Author: Grenni P, Gibello A, Barra Caracciolo A, Fajardo C, Nande M, Vargas R, Saccà ML, Martinez-Iñigo MJ, Ciccoli R, Martín M.
    Journal: Water Res; 2009 Jul; 43(12):2999-3008. PubMed ID: 19476963.
    Abstract:
    A bacterial strain (FPA1) capable of using terbuthylazine, simazine, atrazine, 2-hydroxysimazine, deethylatrazine, isopropylamine or ethylamine as its sole carbon source was isolated from a shallow aquifer chronically contaminated with s-triazine herbicides. Based on its 16S rDNA sequence analysis, the strain FPA1 was identified as Rhodococcus wratislaviensis. The disappearance time of 50% of the initial terbuthylazine concentration in the presence of this strain (DT(50)) was 62days. This strain was also able to mineralise the [U-ring (14)C] triazine-ring, albeit at a slow rate. A 16S rRNA target oligonucleotide probe (RhLu) was designed, and the FISH protocol was optimised, in order to detect R. wratislaviensis in s-triazine-contaminated sites. The RhLu probe gave a positive signal (expressed as % of total DAPI-positive cells) in both the groundwater (2.19+/-0.41%) and soil (2.10+/-0.96%) samples analysed. Using the RhLu probe, R. wratislaviensis can be readily detected, and its population dynamics can be easily monitored, in soil and in water ecosystems contaminated with s-triazine. To the best of our knowledge, this is the first report showing the isolation, from groundwater, of a bacterial strain able to degrade s-triazines.
    [Abstract] [Full Text] [Related] [New Search]