These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Probenecid, an inhibitor of transmembrane organic anion transporters, alters tissue distribution of DNA adducts in 1-hydroxymethylpyrene-treated rats.
    Author: Monien BH, Müller C, Bakhiya N, Donath C, Frank H, Seidel A, Glatt H.
    Journal: Toxicology; 2009 Jul 28; 262(1):80-5. PubMed ID: 19481134.
    Abstract:
    1-Methylpyrene (1-MP), an abundant alkylated polycyclic aromatic hydrocarbon, is activated by side-chain hydroxylation to 1-hydroxymethylpyrene (1-HMP) and subsequent sulfo-conjugation to electrophilic 1-sulfooxymethylpyrene (1-SMP). In rats, this activation mainly occurs in liver. 1-SMP may react with hepatic DNA or be exported into the blood circulation to reach other tissues, in particular kidneys. Findings with recombinant cell lines suggest that renal 1-SMP uptake proceeds via organic anion transporters (OATs). Here, we tested the hypothesis that probenecid, a characteristic OAT inhibitor, interferes with kidney damage brought about by 1-SMP formed in rats. 1-HMP was administered intraperitoneally to 30 rats, half of which were co-treated with probenecid. The tissue distribution of DNA adducts was analyzed using (32)P-postlabeling and isotope dilution LC-MS/MS for the detection of the adducts N(2)-(1-methylpyrenyl)-2'-deoxyguanosine and N(6)-(1-methylpyrenyl)-2'-deoxyadenosine. In rats treated solely with 1-HMP, adduct levels in kidney tissue were about 3-fold and 8-fold higher than those in liver and lung, respectively. After co-treatment with probenecid, hepatic and pulmonary adduct levels were 12-fold and 4-fold elevated, respectively, whereas renal adduct levels were slightly lower compared to those of rats receiving 1-HMP alone. Moreover, serum levels of 1-SMP were increased 23-fold in animals pre-treated with probenecid. The differential effects on hepatic and pulmonary adduct levels suggest that not only renal OATs, but also additional anion transporters, e.g. those mediating the hepatic export of 1-SMP into the bile, were inhibited. Thus, transmembrane transport proteins play a crucial role in the distribution of reactive phase II metabolites, and thereby in tissue allocation of DNA adducts.
    [Abstract] [Full Text] [Related] [New Search]