These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Polymerization shrinkage kinetics of dimethacrylate resin-cements.
    Author: Spinell T, Schedle A, Watts DC.
    Journal: Dent Mater; 2009 Aug; 25(8):1058-66. PubMed ID: 19481245.
    Abstract:
    OBJECTIVES: To determine polymerization shrinkage-strain (S(Y)) and shrinkage-stress (S(Z)) of six resin-cements and to compare their performance with the aid of degree of conversion (DC) data. METHODS: Variolink 2 (VL2), Multilink Automix (MA), Multilink Sprint (MS, all Ivoclar-Vivadent), Nexus 2 (NX2), Maxcem (MX, both Kerr) and RelyX Unicem (RX, 3M-Espe) were investigated. MS, MX and RX were self-adhesive; others require a bonding-agent. All measurements were conducted at 23 degrees C for 60min (n=5), except 80min for RX, with materials self-cured only (sc) and dual-cured (dc); NX2 and VL2 were additionally light-cured only (lc). S(Y) was measured by the bonded-disk method [Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dent Mater 1991;7(4):281-7; Watts DC, Marouf AS. Optimal specimen geometry in bonded-disk shrinkage-strain measurements on light-cured biomaterials. Dent Mater 2000;16(6):447-51]; S(Z) by the Bioman instrument [Watts DC, Satterthwaite JD. Axial shrinkage-stress depends upon both C-factor and composite mass. Dent Mater 2008;24(1):1-8 [Epub October 24, 2007]; Watts DC, Marouf AS, Al-Hindi AM. Photo-polymerization shrinkage-stress kinetics in resin-composites: methods development. Dent Mater 2003;19(1):1-11]. Light-cure was achieved by QTH at 500mW/cm(2). The respective DCs were measured under the same conditions by FTIR-ATR spectroscopy. Data were analyzed by One-Way ANOVA plus Bonferroni test, and by t-test, at p<0.05. RESULTS: DC by self-curing was less than the DC by dual-curing, for all cements. Shrinkage-strain ranged from 1.77 to 5.29% and shrinkage-stress from 3.36 to 10.37MPa. NX2 and VL2 were not significantly different, when light-cured only. Except for RX, sc and dc shrinkage-strain varied maximally by 0.4%. MX showed the highest S(Y), RX the lowest. When sc, RX initially expanded by <0.5% (t approximately 5min). For most materials, S(Y) correlated with their filler loading. The highest stress with sc was exerted by MX, and when dc by MS, which was not statistically different from MX. SIGNIFICANCE: Shrinkage data of resin-cements are of intrinsic clinical importance. Self-cure, despite a lower DC, did not necessarily result in a lower S(Y) compared to dual-cure. S(Y)-rate and S(Z) development depend upon cure mode and S(Y) upon filler fraction.
    [Abstract] [Full Text] [Related] [New Search]