These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Does skin moisture influence the blood flow response to local heat? A re-evaluation of the Pennes model. Author: Petrofsky J, Bains G, Prowse M, Gunda S, Berk L, Raju C, Ethiraju G, Vanarasa D, Madani P. Journal: J Med Eng Technol; 2009; 33(7):532-7. PubMed ID: 19484652. Abstract: Pennes first described a model of heat transfer through the limb based only on calories delivered from a heat source, calories produced by metabolism and skin blood flow. The purpose of this study was to determine the effect of a moist versus a dry heat source on the skin in eliciting a blood flow response to add data to this model. Ten subjects were examined, both male and female, with a mean age of 32.5 +/- 11.6 years, mean height of 172.8 +/- 12.3 cm, and mean weight of 77.6 +/- 19.5 kg. Skin temperature was measured by a thermocouple placed on the skin and skin blood flow measured by a laser Doppler flow meter. The results of the experiments using a dry heat pack (commercially available chemical 42 degrees C cell dry heat source), moist hydrocollator pack (72.8 degrees C) separated from the skin by eight layers of towels, and whirlpool at 40 degrees C, showed that moist heat caused a significantly higher skin blood flow (about 500% greater) than dry heat (p < 0.01). Most of the greater increase in skin blood flow with moist heat was due to the greater rate of rise of skin temperature with moist versus dry heat while some of the increase in blood flow was due to the moisture itself. This could either be related to the greater heat flux across the skin with moist air or due to changing the ionic environment around skin thermo receptors by keeping the skin moist during heating. Skin thermo receptors are believed to be temperature sensitive calcium gated channels in endothelial cells which couple calcium influx to a release of nitric oxide. If true, reducing moisture in the skin might have the effect of altering ionic flux through these receptors. A correct model of skin heat flux should therefore take heat moisture content into consideration.[Abstract] [Full Text] [Related] [New Search]