These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An osmosensitive voltage-gated K+ current in rat supraoptic neurons. Author: Zhang W, Wang D, Liu XH, Kosala WR, Rajapaksha JS, Fisher TE. Journal: Eur J Neurosci; 2009 Jun; 29(12):2335-46. PubMed ID: 19490083. Abstract: The magnocellular neurosecretory cells of the hypothalamus (MNCs) regulate their electrical behaviour as a function of external osmolality through changes in the activity of osmosensitive ion channels. We now present evidence that the MNCs express an osmosensitive voltage-gated K(+) current (the OKC). Whole-cell patch-clamp experiments on acutely isolated MNCs were used to show that increases in the external osmolality from 295 to 325 mosmol/kg cause an increase in a slow, tetraethylammonium-insensitive outward current. The equilibrium potential for this current is close to the predicted E(K) in two different concentrations of external K(+). The OKC is sensitive to block by Ba(2+) (0.3 mm), and by the M-type K(+) current blockers linopirdine (150 microm) and XE991 (5 microm), and to enhancement by retigabine (10 microm), which increases opening of M-type K(+) channels. The OKC is suppressed by muscarine (30 microm) and is decreased by the L-type Ca(2+) channel blocker nifedipine (10 microm), but not by apamin (100 nm), which blocks SK-type Ca(2+)-dependent K(+) currents. Reverse transcriptase-polymerase chain reaction and immunocytochemical data suggest that MNCs express several members of the K(V)7 (KCNQ) family of K(+) channels, including K(V)7.2, 7.3, 7.4 and 7.5. Extracellular recordings of individual MNCs in a hypothalamic explant preparation demonstrated that an XE991- and retigabine-sensitive current contribute to the regulation of MNC firing. Our data suggest that the MNCs express an osmosensitive K(+) current that could contribute to the regulation of MNC firing by external osmolality and that could be mediated by K(V)7/M-type K(+) channels.[Abstract] [Full Text] [Related] [New Search]