These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Treatment of local scrubber wastewater for semiconductor by using photo-catalytic ozonation.
    Author: Chou CY, Huang CP, Shang NC, Yu YH.
    Journal: Water Sci Technol; 2009; 59(11):2281-6. PubMed ID: 19494469.
    Abstract:
    This study investigates the oxidation of local scrubber wastewater (LSW) from semiconductor manufacture by using ozonation, catalytic ozonation (ozone/Al(2)O(3) and ozone/TiO(2)-Al(2)O(3)), and photo-catalytic ozonation (UV/TiO(2)-Al(2)O(3), ozone/UV and ozone/UV/TiO(2)-Al(2)O(3)). The results show that catalyst Al(2)O(3) and TiO(2)-Al(2)O(3) promotes the TOC removal under the condition of neutral or alkaline buffer solution during catalytic ozonation of LSW. The Al(2)O(3) induces highest promotion in TOC removal efficiency, which is higher than ozone alone by 26% TOC removal under alkaline buffer solution. However, TiO(2)-Al(2)O(3) and Al(2)O(3) cannot display the promotion in TOC removal under acidic condition. In addition, a pre-treatment of anion ion-exchange is employed and the result indicates that decreasing the anion ions concentration before AOPs can imply higher TOC removal during AOPs of LSW. In this study, ozone/UV under raw LSW acidic condition and ozone/Al(2)O(3) under alkaline buffer solution present 95% and 88% TOC removal rate respectively and show the higher TOC removal efficiency than other AOPs. Therefore, these two kinds of AOP can serve as the very viable AOP methods in the LSW reclamation for semiconductor.
    [Abstract] [Full Text] [Related] [New Search]