These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neuroanatomical plasticity in the gonadotropin-releasing hormone system of the ewe: seasonal variation in glutamatergic and gamma-aminobutyric acidergic afferents. Author: Sergeeva A, Jansen HT. Journal: J Comp Neurol; 2009 Aug 20; 515(6):615-28. PubMed ID: 19496167. Abstract: Temperate zone animals time the onset of reproductive events to coincide with specific portions of the sidereal year. Although the neural mechanisms involved remain poorly understood, a marked annual variation in the brain's sensitivity to estradiol negative feedback is thought to mediate many of the changes in neuroendocrine hormone secretion, especially that of the gonadotropin-releasing hormone (GnRH) neurons, via neural afferents. The aim of the present study was to determine whether glutamatergic inputs to GnRH neurons in sheep vary seasonally and to expand our previous observations of seasonal changes in gamma-aminobutyric acid (GABA)-ergic inputs. Brains from adult sheep were collected during the breeding season (N = 8) or the nonbreeding season (anestrus; N = 7). Confocal microscopy and optical sectioning were used to quantify the density of labeled VGLUT2 and VGAT immunoreactivity onto GnRH neurons. The results reveal a significantly greater number of VGLUT2-ir inputs to GnRH dendrites during the breeding season vs. the nonbreeding season but no seasonal changes on GnRH cell somas. The number of VGAT-ir terminals onto GnRH dendrites was reduced in the breeding season compared with the nonbreeding season. GnRH neurons were also found to receive dual-phenotype (VGLUT + VGAT) inputs; these varied with season in a manner similar to VGAT inputs. Morphologically, the numbers of branches of proximal dendrites increased significantly in a subset of GnRH neurons located near the midline. Together these results reveal a dynamic seasonal reorganization of identified inputs onto GnRH neurons and lend additional support to the overall hypothesis that seasonal modulation of GnRH neurons involves glutamatergic and GABAergic neural plasticity.[Abstract] [Full Text] [Related] [New Search]