These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro.
    Author: Huang SB, Gao SS, Yu HY.
    Journal: Biomed Mater; 2009 Jun; 4(3):034104. PubMed ID: 19498220.
    Abstract:
    The purpose of the research was to determine the effect of nano-hydroxyapatite concentrations on initial enamel lesions under dynamic pH-cycling conditions. Initial enamel lesions were prepared in bovine enamel with an acidic buffer. NaF (positive control), deionized water (negative control) and four different concentrations of nano-hydroxyapatite (1%, 5%, 10% and 15% wt%) were selected as the treatment agents. Surface microhardness (SMH) measurements were performed before/after demineralization and after 3, 6, 9 and 12 days of application, and the percentage surface microhardness recovery (%SMHR) was calculated. The specimens were then examined by a scanning electron microscope. The %SMHR in nano-hydroxyapatite groups was significantly greater than that of negative control. When the concentration of nano-HA was under 10%, SMH and %SMHR increased with increasing nano-hydroxyapatite concentrations. There were no significant differences between the 10% and 15% groups at different time periods in the pH-cycling. The SEM analysis showed that nano-hydroxyapatite particles were regularly deposited on the cellular structure of the demineralized enamel surface, which appeared to form new surface layers. It was concluded that nano-hydroxyapatite had the potential to remineralize initial enamel lesions. A concentration of 10% nano-hydroxyapatite may be optimal for remineralization of early enamel caries.
    [Abstract] [Full Text] [Related] [New Search]