These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method.
    Author: Li L, Yao D, Yin G.
    Journal: Brain Res; 2009 Jul 28; 1282():84-94. PubMed ID: 19501069.
    Abstract:
    Three spatio-temporal neurophysiological patterns involved in visual selective attention were identified from the human event-related potentials (ERPs) by a novel common spatial pattern (CSP) decomposition method and the standardized low resolution brain electromagnetic tomography (sLORETA). In the experiment, stimuli were rapidly presented randomly to the right or left visual fields while subjects attended to one visual field at a time (Clark, Hillyard, 1996. Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. J. Cogn. Neurosci. 8, 387-402). The spatial patterns indicated that visual cortex, prefrontal cortex (PFC), anterior cingulate cortex (ACC) and posterior parietal cortex (PPC) were involved in the control of top-down attention. The temporal waveforms indicated that contralateral PFC and PPC were activated synchronously at about 150 ms after the stimulus onset, with early attention effects only occurring in PFC, and the PPC was activated earlier than that of PFC during 200-260 ms. The results imply that humans adopt different allocation strategies for resources in visual attention and un-attention situations. For attention case, visual cortex consumes the most resources and for non-attention situation, the ACC and PPC consume the most resources.
    [Abstract] [Full Text] [Related] [New Search]