These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Syntheses, crystal structure, spectroscopic characterization and antifungal activity of new N-R-sulfonyldithiocarbimate metal complexes. Author: Alves LC, Rubinger MM, Lindemann RH, Perpétuo GJ, Janczak J, Miranda LD, Zambolim L, Oliveira MR. Journal: J Inorg Biochem; 2009 Jul; 103(7):1045-53. PubMed ID: 19505726. Abstract: Five new compounds with the general formula of (Bu(4)N)(2)[M(RSO(2)NCS(2))(2)], where Bu(4)N=tetrabutylammonium cation, (M=Ni, R=4-FC(6)H(4)) (1), (M=Zn, R=4-FC(6)H(4), 4-ClC(6)H(4), 4-BrC(6)H(4), 4-IC(6)H(4)), (2), (3), (4) and (5), respectively, were obtained by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate (RSO(2)N=CS(2)K(2)) with nickel(II) chloride hexahydrate or zinc(II) acetate dihydrate in metanol:water 1:1. The elemental analyses and the IR data are consistent with the formation of the expected bis(dithiocarbimato)metal(II) complexes. The (1)H and (13)C NMR spectra showed the signals for the tetrabutylammonium cation and the dithiocarbimate moieties. The compounds 1, 2 and 5 were also characterized by X-ray diffraction techniques. The nickel(II) is coordinated by two N-4-fluorophenylsulphonyldithiocarbimato(2-) ligands forming a planar coordination. The zinc(II) exhibits distorted tetrahedral configuration in compounds 2 and 5 due to the chelation effect of two sulfur atoms of the N-R-sulfonyldithiocarbimate ligands. The antifungal activities of the compounds were tested in vitro against Colletotrichum gloeosporioides, an important fungus that causes the plant disease known as anthracnose in fruit trees. All the complexes were active.[Abstract] [Full Text] [Related] [New Search]