These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural, electronic and magnetic properties of V(2)O(5-x): An ab initio study.
    Author: Xiao ZR, Guo GY.
    Journal: J Chem Phys; 2009 Jun 07; 130(21):214704. PubMed ID: 19508084.
    Abstract:
    Pure V(2)O(5) is a diamagnetic layered semiconductor with many applications such as catalysis. In this paper, we study oxygen vacancy-induced changes in the atomic and electronic structures as well as magnetic properties of V(2)O(5-x) within spin density functional theory with generalized gradient approximation. Both the supercell approach and virtual crystal approximation are used to simulate the oxygen-deficient V(2)O(5-x) with vacancy concentration x up to 0.5. The 1x2x2 supercell calculations with one O vacancy predict that the formation energies of the apical (O(1)), bridge (O(2)), and chain (O(3)) oxygen vacancies are, respectively, 2.48, 4.17, and 4.44 eV/vacancy, and hence that the O vacancies in V(2)O(5-x) would be predominantly of the O(1) type. The local structural distortions of the V atoms next to the O vacancies are found to be large for high vacancy density x(x>0.25), and for x approximately 0.5, even the crystal lattice changes from the orthorhombic to monoclinic symmetry. In all the cases considered, an O vacancy-induced stable or metastable ferromagnetic state with spin magnetic moment of approximately 2.0mu(B)/vacancy is found. For x below approximately 0.13 and 0.19<x< approximately 0.45, the ferromagnetic state would be the ground state, while for 0.45<or=x<or=0.5, the antiferromagnetic state with the V spins on neighboring rungs (AF-2) being antiparallel is the ground state. Importantly, this suggests that undoped V(2)O(5-x) with x<or=0.13 and 0.19<x< approximately 0.45 would be a diluted ferromagnetic semiconductor. The AF-2, however, disappears for x<or=0.25, while the antiferromagnetic state with the V spins on neighboring ladders being antiparallel (AF-1) occurs for the entire range of x studied. Nevertheless, the AF-1 is energetically more favorable than the ferromagnetic state only in 0.13<x< approximately 0.19. For low O vacancy concentrations (x<0.25), the electronic structure of V(2)O(5-x) is very similar to that of the perfect bulk V(2)O(5), except that 2x electrons now occupy the low V d(xy) dominant conduction bands which are exchange split. Majority of the magnetization is located on the d(xy)-orbitals of the V atoms near the O vacancy site. For larger x values, however, the electronic structure may change significantly, and, in particular, the V d-orbital character of the low conduction bands can be altered completely. Analysis of the calculated electronic structure reveals that the oxygen vacancy-induced magnetization in V(2)O(5-x) results primarily from the Stoner mechanism.
    [Abstract] [Full Text] [Related] [New Search]