These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Angiotensin II up-regulates PAX2 oncogene expression and activity in prostate cancer via the angiotensin II type I receptor.
    Author: Bose SK, Gibson W, Giri S, Nath N, Donald CD.
    Journal: Prostate; 2009 Sep 01; 69(12):1334-42. PubMed ID: 19517575.
    Abstract:
    BACKGROUND: Paired homeobox 2 gene (PAX2) is a transcriptional regulator, aberrantly expressed in prostate cancer cells and its down-regulation promotes cell death in these cells. The molecular mechanisms of tumor progression by PAX2 over-expression are still unclear. However, it has been reported that angiotensin-II (A-II) induces cell growth in prostate cancer via A-II type 1 receptor (AT1R) and is mediated by the phosphorylation of mitogen activated protein kinase (MAPK) as well as signal transducer and activator of transcription 3 (STAT3). METHODS: Here we have demonstrated that A-II up-regulates PAX2 expression in prostate epithelial cells and prostate cancer cell lines resulting in increased cell growth. Furthermore, AT1R receptor antagonist losartan was shown to inhibit A-II induced PAX2 expression in prostate cancer. Moreover, analysis using pharmacological inhibitors against MEK1/2, ERK1/2, JAK-II, and phospho-STAT3 demonstrated that AT1R-mediated stimulatory effect of A-II on PAX2 expression was regulated in part by the phosphorylation of ERK1/2, JAK II, and STAT3 pathways. In addition, we have showed that down-regulation of PAX2 by an AT1R antagonist as well as JAK-II and STAT3 inhibitors suppress prostate cancer cell growth. RESULTS: Collectively, these findings show for the first time that the renin-angiotensin system (RAS) may promote prostate tumorigenesis via up-regulation of PAX2 expression. CONCLUSIONS: Therefore, PAX2 may be a novel therapeutic target for the treatment of carcinomas such as prostate cancer via the down-regulation of its expression by targeting the AT1R signaling pathways.
    [Abstract] [Full Text] [Related] [New Search]