These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular phylogeny of Parvilucifera prorocentri (Alveolata, Myzozoa): Insights into perkinsid character evolution.
    Author: Hoppenrath M, Leander BS.
    Journal: J Eukaryot Microbiol; 2009; 56(3):251-6. PubMed ID: 19527352.
    Abstract:
    Perkinsids and colpodellids are lineages that diverged near the origins of dinoflagellates and apicomplexans, respectively, and provide compelling insights into the earliest stages of alveolate evolution. Perkinsids, including Perkinsus and Parvilucifera, are intracellular parasites of animals and dinoflagellates and possess traits also known in syndineans, dinokaryotes (mainly free living dinoflagellates), and colpodellids. An improved understanding of perkinsid biodiversity and phylogeny is expected to shed considerable light on the evolutionary origins of syndineans and dinokaryotes as well as the cellular identities of environmental sequences derived from marine and freshwater habitats. Accordingly, the small subunit (SSU) rDNA sequence from Parvilucifera prorocentri, a tube-forming intracellular parasite of the marine benthic dinoflagellate Prorocentrum fukuyoi, was determined. Molecular phylogenetic analyses demonstrated, with very high statistical support, that P. prorocentri branched as a sister lineage to a divergent clade consisting of Parvilucifera infectans and Parvilucifera sinerae. The entire Parvilucifera clade was nested within a more inclusive and modestly supported clade consisting of Perkinsus and several environmental sequences. Because P. prorocentri possessed a novel combination of ultrastructural features known in Perkinsus, Parvilucifera, and/or syndineans (i.e. germ tubes, trichocysts, and a syndinean-like nucleus), establishing the molecular phylogenetic position of this species enabled us to build a more comprehensive framework for understanding the earliest stages in the evolution of myzozoans.
    [Abstract] [Full Text] [Related] [New Search]