These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydrogen peroxide induces autophagic cell death in C6 glioma cells via BNIP3-mediated suppression of the mTOR pathway.
    Author: Byun YJ, Kim SK, Kim YM, Chae GT, Jeong SW, Lee SB.
    Journal: Neurosci Lett; 2009 Sep 18; 461(2):131-5. PubMed ID: 19539716.
    Abstract:
    Oxidative stress by exposure to H(2)O(2) induces various types of cell death depending on cell type and conditions. We report herein on a study of the mechanisms underlying H(2)O(2)-induced cell death in C6 glioma cells. The findings show that H(2)O(2) triggers a caspase-independent autophagic cell death in these cells. The findings also show that H(2)O(2) induces the dephosphorylation of the mammalian target of rapamycin (mTOR) at Ser 2481 and the p70 ribosomal protein S6 kinase (p70S6K) at Thr389 in a Bcl-2/E1B 19kDa interacting protein 3 (BNIP3)-dependent manner. BNIP3 has the capacity to inhibit mTOR activity and mTOR inhibition plays a role in autophagic induction. This suggests that BNIP3 may mediate H(2)O(2)-induced autophagic cell death through the suppression of mTOR. The findings show that the down-regulation of BNIP3 by BNIP3 siRNA prevents C6 cells from undergoing H(2)O(2)-induced autophagic cell death. Collectively, these results suggest that H(2)O(2) induces autophagic cell death in C6 cells via the BNIP3-mediated suppression of the mTOR pathway.
    [Abstract] [Full Text] [Related] [New Search]