These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The aldo-keto reductase Akr1b7 gene is a common transcriptional target of xenobiotic receptors pregnane X receptor and constitutive androstane receptor.
    Author: Liu MJ, Takahashi Y, Wada T, He J, Gao J, Tian Y, Li S, Xie W.
    Journal: Mol Pharmacol; 2009 Sep; 76(3):604-11. PubMed ID: 19542321.
    Abstract:
    Aldo-keto reductase (AKR) family 1, member 7 (AKR1B7), a member of the AKR superfamily, has been suggested to play an important role in the detoxification of lipid peroxidation by-products. The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are xenosensors postulated to alleviate xeno- and endobiotic chemical insults. In this study, we show that the mouse Akr1b7 is a shared transcriptional target of PXR and CAR in the liver and intestine. Treatment of wild-type mice with the PXR agonist pregnenolone-16alpha-carbonitrile (PCN) activated Akr1b7 gene expression, whereas the effect was abrogated in PXR(-/-) mice. Similarly, the activation of Akr1b7 gene expression by the CAR agonist 1,4-bis[2-(3,5-dichlorpyridyloxyl)]-benzene, seen in wild-type mice, was abolished in CAR(-/-) mice. The promoter of Akr1b7 gene was activated by PXR and CAR, and this activation was achieved through the binding of PXR-retinoid X receptor (RXR) or CAR-RXR heterodimers to direct repeat-4 type nuclear receptor-binding sites found in the Akr1b7 gene promoter. At the functional level, treatment with PCN in wild-type mice, but not PXR(-/-) mice, led to a decreased intestinal accumulation of malondialdehyde, a biomarker of lipid peroxidation. The regulation of Akr1b7 by PXR was independent of the liver X receptor (LXR), another nuclear receptor known to regulate this AKR isoform. Because a major function of Akr1b7 is to detoxify lipid peroxidation, the PXR-, CAR-, and LXR-controlled regulatory network of Akr1b7 may have contributed to alleviate toxicity associated with lipid peroxidation.
    [Abstract] [Full Text] [Related] [New Search]