These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrochemical evidences for promoted interfacial reactions: the role of Fe(II) adsorbed onto gamma-Al2O3 and TiO2 in reductive transformation of 2-nitrophenol. Author: Li FB, Tao L, Feng CH, Li XZ, Sun KW. Journal: Environ Sci Technol; 2009 May 15; 43(10):3656-61. PubMed ID: 19544869. Abstract: This study was aimed at elucidating the role of adsorbed Fe(II) on minerals in the reductive transformation of 2-nitrophenol (2-NP) by using electrochemical methods. The studies of Fe(ll) adsorption and 2-NP reduction kinetics showed that the identity of minerals such as gamma-Al2O3 and TiO and the solution pH were crucial factors to determine the Fe(ll) adsorption behavior and to influence the rate constant (k) of 2-NP reduction. Furthermore, two electrochemical methods, cyclic voltammetry (CV) and electrochemical impedance spectrometry (EIS), were applied to characterize the Fe(II) reactivity with both the mineral-coated and mineral-free electrodes. The electrochemical evidence confirmed that the peak oxidation potential (Ep) of complex Fe(II) can be significantly affected by the solution pH;the enhanced reductive transformation of 2-NP can be related to the reduced Ep of surface-complex Fe(II) and the reduced charge transfer resistance (R(CT)) of the Fe(III)/Fe(II) couple. All these relationships were studied quantitatively. At pH 6.7, the measured Ep and R(CT) decreased in the order TiO2/GC < gamma-Al2O3/ GC < GC (Ep, 0.140 < 0.190 < 0.242 V; R(CT), 0.30 < 0.41 < 0.78 komega), while the 2-NP reduction on different minerals were in the order TiO2 > gamma-Al2O3 > nonmineral (k x 10-2, 7.91 > 0.64 > 0.077 min(-l)).[Abstract] [Full Text] [Related] [New Search]